SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects

Abstract

To enable meaningful robotic manipulation of objects in the real world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulty extending predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.

Publication
In Conference on Robot Learning (CoRL) 2023
Ning Gao
Ning Gao
PhD Student

My research interests include meta-learning, self-supervised learning, robotic vision.